D Cutting edge: Portfolio management

ASsessIng views

A key breakthrough in portfolio management theory was the Black-Litterman framework for
finding which subjective view of market performance was best supported by empirical data.
However, the question remains how to measure the divergence of a single manager view
conditioned using this framework with a firm-wide view of the market embodying the
equilibrium returns found from data. Here, Gianluca Fusai and Attilio Meucci provide a

technique for doing this

ment company should reflect the set of views expressed by the asset

management team. In practice, this implies a simultaneous optimi-
sation of hundreds of portfolios, each with different characteristics and
constraints. Failing to properly structure this process causes inconsis-
tencies and dispersions in the performance across the various lines, with
a negative impact on the company’s ability to establish its ‘brand’ in the
investment industry.

One way to solve this problem was proposed by Black & Litterman
(1992). In their seminal paper, Black & Litterman provided a breakthrough
methodology to integrate the committee’s views with a firm-wide fore-
casting model (universal equilibrium in their case). The views are inputted
together with a confidence level, which balances the impact of the views
on the final asset allocation with respect to the forecasting model: the
stronger the confidence, the further the allocation from the optimal allo-
cation based on the forecasting model only. This methodology is very flex-
ible, in that the practitioner does not necessarily need to express views on
all the asset classes considered in the forecasting model. Furthermore, the
output is model-coherent: optimal asset allocations based on the Black &
Litterman approach are not dramatically different from those based on the
original firm-wide forecasting model. This is an extremely valuable fea-
ture in practical applications.

Practitioners know qualitatively how extreme their views are, that is,
how far they are from the forecasting model. Nevertheless, it would be
advisable to have at our disposal a single number, an index between zero
and one, that quantifies how close the output of the Black & Litterman
methodology is to the firm-wide model. Furthermore, we won’t know the
danger of the view until it is combined with a risk preference on the effi-
cient frontier. However, it would be useful to have indications about which
among the views expressed are the furthest from the forecasting model,
and how to fix them accordingly. Given the measure in this article, we can
tell how extreme the view might be. To the best of our knowledge, no
methodology has been developed to answer the above two problems.
First, we review the Black & Litterman approach. Then we provide a so-
lution to the above problems, which is based on simple statistical and
mathematical techniques. Following that, we see the effects on asset allo-
cation. Then we conclude.

The allocation decisions across all the products of an asset manage-

The Black & Litterman approach

In the Black & Litterman framework, the firm-wide accepted forecasting
model (or the general equilibrium model in the original article) assumes
that the N-dimensional vector of logarithmic returns r on N asset classes
at a given horizon is a multivariate normal distribution:

r~N(x) (1)

where p is the N x 1 vector of expected future returns and 3 is the N x
N covariance matrix of future returns. This assumption is consistent with
the standard Black-Scholes (1973) model. This means that the density func-
tion of the returns is the multivariate Gaussian:
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To illustrate, we consider the oversimplified case of an institution that
adopts the RiskMetrics model to optimise the allocation of an internation-
al stock fund that invests in the following six stock market national index-
es: Italy, Spain, Switzerland, Canada, the US and Germany. In this case, the
time horizon of the returns on the above classes is one day and the returns
expected value p is zero. The covariance matrix of future daily returns on
the above classes X is estimated by exponential smoothing of past daily
returns and made publicly available by RiskMetrics. The matrix in our ex-
ample was estimated in August 1999. Here, we report its decomposition in
terms of the vector of volatilities ¢ and the correlation matrix C:

0 =(1.34%,1.52%, 1.53%, 1.55%, 1.82%, 1.97%)
1 54% 62% 25% 41% 59%
1 69% 29% 36% 83%
1 15% 46% 65%

C =
1 47% 39%
1 38%
1

Typically, a fund manager has personal views on future returns. To con-
tinue with our example, he might assess three views: the Spanish index
will remain unvaried, the Canadian stock index will score a negative re-
turn of 2% and the German index will experience a positive change of 2%.
The Spanish and the German markets’ stock returns are highly correlated
(83%) and the Canadian index is relatively independent of the other mar-
kets (bold column/row). A very naive, yet sub-optimal way to include
these views in the forecasting model would consist of simply assuming
that the returns are still normally distributed:

T~ N(uxuh’zsub) (3)
where all the parameters are unchanged:
Psup =M Esub =X (4)

except for substituting in the respective entries of the expected value the
personal views:

I:'J‘suh ]2 =0
[p‘sub ]4 =-0.02 (5)
[ |, =0.02

Unfortunately, the effects on any allocation based on this new model is
disruptive: especially in highly correlated markets, extreme corner solu-
tions take place and the overall portfolio becomes meaningless.

The Black & Litterman methodology solves this problem. As a first step,
the views are expressed in compact notation as follows:
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Vr ~N(q.9) (6)

where V is a full rank K x N matrix such that each of the K rows corre-
sponds to one view and selects the (linear combination of) returns involved
in that view; q is a K x 1 vector that quantifies the views; and €2 is a K x
K matrix that represents the practitioner’s uncertainty about their views.
Usually, €2 is chosen as a multiple of the estimated covariance of the views:

Q=ovEV’ (7
where o is a positive scalar.

To continue with our example, the asset manager assesses the views
(5) by means of V and q, which in this case read:

010000 0
v=|0 0 0 1 0 O q=|—2% 8)
00 0O0O01 2%

The manager’s uncertainty is set comparable to the market volatility, which
implies that the uncertainty matrix € is given by (7) with o0 = 1.

Using a Bayesian approach, Black & Litterman prove that the most
model-consistent vector of expected returns that incorporates the practi-
tioner’s views is a normal distribution:

r-~ N(”‘BL’EBL) 9)
where:

by =+ IV (VEV' + Q) (- Vp)
= (10)
3, =2-3V/(VEV'+9Q) VE

Due to the Gaussian setting of the problem in the Black & Litterman
approach, the expression of the covariance X, is not affected by the value
of the views q, as opposed to the expected values W, . Formula (10) is
useful in various contexts, among them Markowitz’s (1959) optimal port-
folio allocation. Inputting expected returns and covariances according to
(9) does not give rise to the extreme allocations that one obtains using (3).
Finally, as the example shows, the practitioner is not required to express
views on all the asset classes.

Assessing the views

The Black & Litterman approach provides the practitioner with a technique
to express, in the most model-consistent way possible, their views on the
market. Nevertheless, these views might be in strong contrast with the ac-
cepted model or, in other words, p might be very different from p, . Is it
possible to quantify this difference in statistical terms and provide the asset
manager with a simple test, that is, one number that represents the prob-
ability of their views if the firm-wide model is true?

To answer this question, we first recall the well-known Z-score, which
is widely used by practitioners: the distance of a suspicious value X from
the accepted expected value p divided by the standard deviation ¢ of X.
In our context, the ‘suspicious’ value is the Black & Litterman vector ex-
pected value and the Z-score becomes in this multi-dimensional environ-
ment the Mahalanobis distance (Morrison, 1990):

M(‘I)E(HBL (q)—u)' = (ILBL ((I)_H) 11)

If the distance M(q) is below a certain threshold, the practitioner can
safely place their bets; otherwise, they should be wary that at least one of
their views might be too bold. How do we turn the distance M(q) into a
probability? We observe that under the hypothesis (1) the Mahalanobis dis-
tance (11) is distributed as a chi-square with N degrees of freedom. The
number we seek, that is, the probability of the views, is therefore:

P(q)=1-F(M(q)) (12)

where F is the cumulative probability of the chi-square distribution with

1. Consistency of the Black-Litterman output with the

forecasting model
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N degrees of freedom.

When the overall probability (12) is below an agreed threshold, often
a slight shift in only one of the views is enough to boost this probability
upward. Therefore, another natural problem is how to detect the ‘boldest’
views, and how to fix them accordingly. To solve this problem, we need
to calculate the sensitivity of the probability (12) to the views. From the
chain rule, the sensitivity is:

aP(‘l)_aﬁ oM opg
aq oM dpg 9dq (13)
=2/ (M)(VEV'+9)" V(g — 1)

where f= dF/dM is the probability density of the chi-square distribution
with N degrees of freedom. To tweak the views, the practitioner simply
needs to calculate expression (13) and find the entry with the largest ab-
solute value. If that entry is positive (negative), the respective view must
be increased (decreased) slightly.

The probability index (12) is consistent with the role of the manag-
er’s uncertainty in (10) and (7) allows us to interpret the uncertainty ma-
trix in (6) and (7). If € is small (o tends to zero in (7)), the practitioner
is extremely confident in their views, and indeed the returns satisfy the
equation:

Vr ~ N(q,0) (14)

or, in other words, Vr = q with certainty. As we can see in figure 1, the
output of the Black & Litterman methodology p, (q) is at its furthest from
B, the Mahalanobis distance M(q) (shown on the left-hand scale) ap-
proaches its peak and the probability P(q) (shown on the right-hand scale)
approaches its minimum. On the other hand, if €2 is large (a tends to in-
finity) the practitioner is completely vague and (9) becomes (1). As a con-
sequence, the distance M(q) tends to zero and the overall probability P(q)
approaches one.

To illustrate how the index works, we apply this recipe to our exam-
ple. We start with (8). The overall probability (12) and the sensitivities (13)
are, respectively:

e |
P(q)=938% —X=| 56 (15)
| g

We see that the probability is relatively insensitive to the second view on
Canada, even though it is of the same magnitude as the third one on Ger-
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2. Progressively tuning the views
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many (200 basis points) and that even the first, apparently innocuous, view
(0%) on Spain has a higher effect on the probability. This is not unex-
pected, since the second view refers to a relatively independent market,
whereas the first and third view state contrasting opinions on highly cor-
related markets.

Suppose the manager requires a confidence of at least 95%. To achieve
this threshold he should fine-tune, and actually decrease, the third view
on the German index. It turns out that a 20bp shift, which changes (8)
into:

0
DQnod = 2%
1.8%

brings the overall probability to:
P(qoq) = 95:4% (16)

which is above the desired level.

In figure 2, we see the effect on P(q) of progressively reducing the
boldness of the views. In the lower part, we display different views on the
performance of Canada and Germany starting from the initial view +2%,
—2%. In the upper part, we report the overall probability corresponding to
these less extreme views.

Effects on allocation

The ultimate purpose of the Black & Litterman methodology, and there-
fore of our technique to improve the consistency of the views, is to ob-
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tain optimal portfolios that reflect the management’s views in a market-
consistent way. To obtain optimal portfolios, we need a definition of op-
timality that associates the best portfolio with the predictive distribution
of returns.

The most standard such rule is the mean-variance approach pioneered
by Markowitz (1959). In this approach, the asset management company
sells a range of products that span the so-called ‘efficient frontier’, that is,
the set of products with the best trade-off between volatility and expect-
ed value of returns. This is the rule that we adopt in this article to illus-
trate our test. The mean-variance approach is somewhat flawed in this
context, in that under any of the assumptions (1), (3) or (9) prices are log-
normally distributed, and thus not elliptically, distributed. Alternative ways
to obtain optimal portfolios are the minimisation of the value-at-risk, or
the minimisation of the expected shortfall.

To find the mean-variance efficient allocations, we need to calculate
the expected values and the covariance matrix of the linear returns on as-
sets R, which are linked to the logarithmic returns r that we have so far
dealt with by the relation:

exp(r)=1+R

It can be easily proved that, if the logarithmic returns r are normally dis-
tributed:

r~N(pX) an

then the linear returns are distributed as a shifted multivariate lognormal,
whose expected value and covariance matrix read component-wise re-
spectively:

[E{R}] = exp(ui + %zii) -1

18
I:COV{R}:L’]' = exp(ui + %Eﬁjexp(uj + %Eﬂ)(exp(ﬁg) - 1) (18)

At this point for any level of risk aversion k € (0, o), we obtain the re-
spective efficient allocation as the vector of relative weights w(k) that solves
the following maximisation:

w(k) = argmax {wE{R} - kw' Cov{R }w} (19

where the maximisation is subject to the full-investment and the no-short-
sale constraints, respectively:

In figure 3, we plot: the portfolios in the efficient frontier calculated ac-
cording to the firm-wide forecasting model (1) when no views are inputted;
the portfolios in the efficient frontier when the views are inputted by means
of the Black & Litterman methodology (9); the portfolios in the efficient
frontier when the views are inputted by means of the Black & Litterman
methodology after modifying the most extreme view according to our test;
and the portfolios in the efficient frontier when the views are inputted by
means of the simple substitution (3).

To analyse the result, we focus on the more risky among the effi-
cient allocations, where diversification plays a major role. For example,
we consider the allocations corresponding to the vertical bar in the fig-
ure. The base-case portfolio, made of four assets, is well diversified. As
expected, the Black & Litterman portfolio maintains this degree of di-
versification, but the allocation promotes the asset relative to the bull-
ish view and demotes the asset relative to the bearish view. The Black
& Litterman portfolio modified according to our test makes the portfo-
lio more market-consistent and slightly enhances the diversification ef-
fect to five assets. The naive direct modification concentrates the
allocation on three assets only.

The test on the views and the recipe to fix them accordingly to obtain
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3. Diversification effects of the views on allocation
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a more consistent allocation is independent of the final allocation itself.
This is an advantage for several reasons. First, the probability index and
the test cannot be ‘fooled’ by the allocation. Suppose that the financial in-
stitution invests in two US indexes: the S&P 500 and the Dow Jones. The
two assets are different, but very correlated: a portfolio invested, say, 25%
in the S&P 500 is basically the same as one that instead invests that por-
tion in the Dow Jones. Even though the weights of the two portfolios dis-
play a cumulative difference of 50%, it can be easily tested that the
probability of either allocation is substantially the same. Second, the dis-
tribution of the Mahalanobis distance of returns is independent of the in-
vestor’s preferences, whereas the distribution of the portfolio weights, and
even more so any test based on this distribution, would depend on the in-
vestor utility. Finally, the distribution of the Mahalanobis distance is a sim-
ple chi-square, whereas even in the case of a mean-variance manager the
distribution of the weights does not admit a simple analytical representa-
tion (see, for example, Jobson & Korkie, 1980).

Conclusion

To summarise, the recipe goes as follows: first state the views (6), then cal-
culate the overall probability (12) and the sensitivity (13). If the overall
probability is above a certain threshold, go ahead and place your bets.
Otherwise, look at the sensitivities. If the largest in absolute value is pos-
itive (negative) slightly increase (decrease) the respective view. Repeat the
last steps until the overall probability attains the desired threshold. Then

proceed to calculate the optimal asset allocation according to a prescribed
optimisation rule. []
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