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1 Financial data

Closing price figures and daily trade volumes for the FTSE 100 index were obtained from Yahoo

Finance (https://uk.finance.yahoo.com/).

2 Financial Times text preprocessing

We analyze a corpus of daily issues of the Financial Times from January 2, 2007 to December

31, 2012. Issues were retrieved from http://www.ft.com/ in Portable Document Format

(PDF). All issues were retrieved for this period, with the exception of five dates due to technical

problems. These dates were February 22, 2007, March 8, 2007, May 12, 2007, January 28,

2009, and November 8, 2012. Each PDF was converted to text format (.txt) using the open

source software pdftotext, which is freely available and included in most Linux distributions.

Documents for input to the Latent Dirichlet Allocation (LDA) were defined as blocks of

text that were separated by isolated newline sequences “\n” and contained greater than 30

words. All characters were processed to unicode, forced to lowercase, and hyphens were re-

placed with whitespace. All characters other than the letters “a” to “z” were removed. The

remaining text was then stemmed using the Porter stemming algorithm (Porter 1980), cleaned

of single-letter words, and cleaned of stemmed stopwords. We used the MySQL stopword list

(http://dev.mysql.com/doc/refman/5.6/en/fulltext-stopwords.html),

supplemented with the words “ft”, “financial” “times”, “xd”, “gbp”, “usd”, “euro”, “acc”, “eur”,

“page”, “per”, “cent”, and “mr”. Processed documents containing fewer than 30 words were

removed.
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3 Latent Dirichlet Allocation

We configure a weighted LDA (Hazen 2010, Řehůřek & Sojka 2010, Wilson & Chew 2010,

Xu et al. 2013) to model each document as a mixture of K = 50 topics. In order to reduce

the influence of common words when identifying topics, we weight word counts inversely to

their frequency in the entire corpus, using the TF-IDF weighting scheme for individual words

(Salton & McGill 1986). We find that this scheme helps to control for certain words that were

abundant in the financial literature, but absent from conventional stopword lists.

The gensim Python package (Řehůřek & Sojka 2010) was used for the LDA on the full set

of processed documents. We configured a batch LDA, with ten passes over the entire corpus.

The top ten (stemmed) words for each of the 50 topics are provided in Table S1.

Once the LDA is trained, each document d in the corpus is represented by theK-dimensional

topic vector θd = (θd,1, θd,2, ..., θd,K). The terms in this vector may be interpreted as probabil-

ities, and therefore sum to one. In order to quantify the distribution of topics in the financial

news on a given day, we computed a normalized sum of the distribution of topics over each

document (paragraph) in the corresponding issue of the Financial Times. That is, from the set

of documents Dt in the Financial Times issue on day t, we construct the vector

ρt ≡
1

|Dt|
∑
d∈Dt

θd, (1)

where |Dt| denotes the number of documents in the set Dt. This vector also sums to one, and

quantifies the distribution of topics represented in the Financial Times on day t.

The collection of all ρt form the rows of a matrix ρ, which provides rich information regard-

ing both the detailed and large-scale structure of news to which investors, traders, and the public

are exposed. The columns of ρ, for example, represent time series of weights for individual top-

ics in the Financial Times. Analyses of these individual time series can provide insight into the

ebbs and flows of stories into and out of public attention. Figure S1 depicts the autocorrelation
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functions (ACF) for two topic time series ρTk,t. In Fig. S1A we show the ACF for a topic regard-

ing events in Egypt (“mubarak”, “egypt”, “protest”,...), while in Fig. S1B we show the same for

a topic regarding events in Korea (“korea”, “seoul”, “kim”,...). These two represent topics with

slow and fast decays in their autocorrelation functions, respectively. We quantify the lifetime of

a topic as the first lag (in weekdays) at which the ACF falls within the 95% confidence bands

for an uncorrelated signal. In Fig. S1C we show the distribution of all 50 topic lifetimes. Some

lifetimes are on the order of years, but these tend to constitute topics which occur regularly in

issues of the Financial Times (e.g., topics relating to weather reports, or market performance).

50% of topics have lifetimes shorter than 13 weekdays. Note that these calculations exclude

weekend issues of the Financial Times. Such analyses, while simple, give valuable insight into

“meta characteristics” that may be common to distinct topics in the news.

We also examine the presence of weekly and monthly seasonalities in the diversity Ht in

Fig. S2. In Fig. S2A we observe characteristically low values of the diversity in weekend

issues of the Financial Times, as noted in the main text. In Fig. S2B we show the seasonal

variation in the diversity Ht, excluding weekend issues. We observe little seasonal variation

in Ht, although the diversity appears somewhat higher during the “silly season” in the summer

months.

4 Relation of diversity Ht to financial market movements

As in the main text, the entropy, which we refer to as the diversity, is computed as

Ht ≡ −
K∑
k=1

ρt,k log(ρt,k) (2)

where ρt,k is entry k of the vector ρt, and represents the relative weight of topic k in the Financial

Times on day t. We used the natural logarithm in this analysis, although alternative choices, such

as the logarithm base 2, will simply scale measurements of Ht.
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Figure S1: Variation in topic lifetimes in the Financial Times. (A) ACF for the topic time
series relating to events in Egypt, ρT24,t. (B) The same for a topic relating to events in Korea,
ρT33,t. (C) The distribution of lifetimes for all 50 topics, defined as the first lag at which the
corresponding ACF falls at or below the 95% confidence band for an uncorrelated signal.

4.1 Diversity relates to same-day trading volume

We quantify daily trade volume by differencing the total daily trade volume in the FTSE 100

after a log transformation:

vt ≡ log(Vt)− log(Vt−1) (3)

where Vt represents the total trade volume on day t. One order of differencing, as above, is suf-

ficient to render the series log(Vt) stationary. Specifically, according to a KPSS test (Hyndman

& Khandakar 2008) for log(Vt), testing a null hypothesis of a stationary root against a unit-root

alternative, we reject the null hypothesis: KPSS = 10.6, N = 1516, p < 0.05. We accept the
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Figure S2: Boxplots of the diversity Ht, aggregated by weekday and by month. (A) Weekly
seasonalities in the diversity. Weekend issues of the Financial Times exhibit characteristically
low values of Ht, as a large portion of these issues are devoted to a small number of topics that
appear infrequently in weekday issues, such as the topic containing the words “book”, “music”,
and “film”. (B) Yearly seasonalities in the diversity. In this figure we exclude weekend issues
from our measurements of the diversityHt. We see visually that there is little seasonal variation
in Ht, although the diversity appears somewhat higher during the “silly season”, or “slow news
season” in the summer months.

null hypothesis for vt: KPSS = 0.04, N = 1515, p > 0.05.

To isolate the predictive power of the differenced diversity ∆Ht with respect to changes in

daily trade volume vt, we first examine the extent to which vt may be modeled using only its

past values {vt−1, vt−2, ...}. A scan of ARMA models reveals the presence of both significant

autoregressive and moving average terms. For this purpose we model vt as an ARMA(1,1) pro-

cess. To account for finite-size effects, we also add the logarithm of the number of paragraphs

in each issue as an external regressor:

vt = v0 + α1vt−1 + β1εt−1 + θ1 log(N) + εt (4)

Using maximum-likelihood estimation (Hyndman & Khandakar 2008), we find v0 = 0.12 ±

0.09, α1 = 0.33± 0.05, β1 = −0.82± 0.03, and θ1 = −0.02± 0.01.
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We find that a significant portion of the variance of the residuals in model (4) can be ex-

plained using changes in the diversity ∆Ht. We find that in the model

εt = α0 + α1∆Ht + ηt, (5)

the coefficient α1 = −0.30 ± 0.07 is significant according to a standard t-test (t = −4.0,

N = 1459, p < 0.0001). This motivates us to include the change in diversity ∆Ht, measured in

the Financial Times on the morning of day t, in our model of the volume signal vt for the same

trading day. We therefore fit

vt = v0 + γ1vt−1 + γ2εt−1 + γ3∆Ht + γ4 log(N) + εt (6)

finding v0 = −0.04 ± 0.07, γ1 = 0.29 ± 0.04, γ2 = −0.82 ± 0.03, γ3 = −0.41 ± 0.09, and

γ4 = 0.006 ± 0.01. The coefficient of ∆Ht is again significant according to a standard t-test

(t = −4.6, N = 1459, p < 0.0001). The negative coefficients α1 and γ3 in models (5) and (6)

indicate that falls in the diversity Ht tend to precede increased transaction volumes in the FTSE

100, and that increases in diversity tend to precede trading days in which transaction volumes

are relatively diminished.

We supplement our in-sample tests through a comparison of errors from out-of-sample one-

step forecasts between the models (4) and (6). We fit both models using only the first 70% of the

dataset, and evaluate one-step forecasts on the remaining 30% of the dataset. Using the Diebold-

Mariano test for predictive accuracy (Diebold & Mariano 1995, Hyndman & Khandakar 2008)

with a quadratic loss function, we reject the hypothesis that inclusion of the diversity signal

∆Ht in model (6) fails to provide an increased out-of-sample accuracy (DM = 2.2, N = 431,

p = 0.015).

We provide an additional check on the robustness of our results by bootstrapping on em-

pirical residuals. In particular, we compute the N differences in squared residuals in the out-

of-sample forecasts, and re-sample with replacement N of these points. We then calculate the
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mean M of the differences, where a positive mean indicates that the model including the di-

versity fluctuations results in smaller squared residuals, on average, than the model that does

not include the diversity. We repeat this procedure 10,000 times, finding that the model incor-

porating ∆Ht consistently outperforms the model without it, as M is positive in over 99% of

re-samplings, with a 95% confidence interval of [4.18×10−4, 5.39×10−3]. By re-centering the

distribution of M to zero, we can test the null hypothesis that including the volume signal does

not change the out-of-sample accuracy. We record the mean difference in squared residuals

from the test set, and compare the absolute value of this mean to this re-centered distribution.

We find that the absolute deviation of the re-centered distribution is greater than the absolute

value of this mean only 2.98% of the time, and so we reject the null hypothesis (p = 0.0298).

A cursory analysis reveals no evidence for a reciprocal relationship in which the volume

signal vt anticipates changes in the diversity Ht, as indicated by correlations between vt−1 and

next-day changes in diversity ∆Ht (Pearson r = −0.03, N = 1450, p > 0.05). For a more

thorough investigation, we include the volume signal vt−1 in our MA(1) model of ∆Ht. Here,

we find that although previous-day changes in trade volume are significant when modeling the

diversity ∆Ht in-sample (γ2 = −0.025 ± 0.007, t = −3.5, p < 0.001), they fail to offer any

advantage in out-of-sample predictions upon repetition of the Diebold-Mariano test (DM =

0.87, N = 428, p > 0.1).

4.2 Price changes of the FTSE drive changes in diversity

To isolate the influence of the FTSE 100 returns rt on the diversity Ht, we first determine the

extent to which Ht may be modeled using only its past values {Ht−1, Ht−2, ...}. There exist

general methods to model a time series using only its past values – autoregressive (AR) terms

– as well as the model’s own residuals – moving average (MA) terms. A popular, classical

approach to modeling stationary time series in this way is to train an ARMA model (Chan &
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Cryer 2010).

To this end we model Ht as an ARMA process, finding that one order of differencing is

sufficient to achieve stationarity in Ht. We therefore model the differenced diversity ∆Ht ≡

Ht −Ht−1. Specifically, according to a KPSS test (Hyndman & Khandakar 2008) for Ht, test-

ing the null hypothesis of a stationary root against a unit-root alternative, we reject the null

hypothesis: KPSS = 6.8, N = 1520, p < 0.05. We accept the null hypothesis for ∆Ht:

KPSS = 0.07, N = 1479, p > 0.05. To determine how many elements of the lagged time

series we must include in our model, we scan over several ARMA(p, q) models (p = 1,...,5;

q = 1,...,5) and find that the Akaike information criterion (AIC) is minimized with a simple

MA(1) process. This is corroborated by the autocorrelation function of ∆Ht (Chan & Cryer

2010), which exhibits an isolated negative spike at lag 1 and is otherwise featureless. We there-

fore fit

∆Ht = β0 + εt + β1εt−1, (7)

finding β0 = −0.0001± 0.0003 and β1 = −0.88± 0.02 using maximum-likelihood estimation

(Hyndman & Khandakar 2008). We find no significant dependence of ∆Ht on the day of the

week, as would be indicated by the presence of significant five-day seasonality. A plot of the

signal ∆Ht, as well as its autocorrelation function (ACF) and partial autocorrelation function

(PACF; Chan & Cryer 2010), is provided in Fig. S3.

A simple least-squares linear regression of the residuals of model (7) against the returns of

the FTSE 100 on the previous day suggests that these residuals are at least in part related to

financial market movements. We find that in the model

εt = α0 + α1rt−1 + ηt,

with ηt an error term, the coefficient α1 = 0.5± 0.1 is significant according to a standard t-test

(t = 3.8, N = 1450, p < 0.001). This motivates us to include the previous-day returns of the
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Figure S3: Time-series features of the differenced diversity ∆Ht. (A) Plot of the differ-
enced diversity ∆Ht. (B) The ACF of ∆Ht. (C) The PACF of ∆Ht. The time series exhibits
characteristics of a MA(1) process. The forecast package for R was used in creating this plot
(Hyndman & Khandakar 2008).

FTSE 100 to our model of diversity fluctuations. We therefore fit

∆Ht = γ0 + γ1εt−1 + γ2rt−1 + εt (8)

finding γ0 = 0.0000 ± 0.0003, γ1 = −0.87 ± 0.02 and γ2 = 0.30 ± 0.07. The coefficient γ2

of the previous day’s returns rt−1 is again significant according to a standard t-test (t = 4.3,

N = 1450, p < 0.0001). The positive coefficients in models (4.2) and (8) indicate that decreases

in diversity Ht follow stock market falls, while increases in diversity follow stock market rises.

Ultimately, the utility of the returns rt−1 in predicting changes in the diversity ∆Ht can be

decided in a comparison of errors from out-of-sample one-step forecasts between the models
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(7) and (8). For this purpose, we fit both models using only the first 70% of the dataset – from

January 4, 2007 to March 16, 2011. We then compare one-step forecasts on the remainder of

the data, from March 17, 2011 to December 31, 2012. A scan of ARMA models again finds

that the MA(1) model best fits the training data, according to the AIC statistic.

We compare errors from the out-of-sample forecasts using the Diebold-Mariano test for

predictive accuracy (Diebold & Mariano 1995, Hyndman & Khandakar 2008) with a quadratic

loss function. To interpret the results of this test we need not assume that the forecast errors are

Gaussian, of zero-mean, or serially or contemporaneously uncorrelated (Diebold & Mariano

1995). We find marginal support for the hypothesis that including the previous-day returns of

the FTSE 100, as in model (8), results in an increased out-of-sample accuracy (DM = 1.4,

N = 428, p = 0.078).

We again check the robustness of our results by bootstrapping on empirical residuals. We

compute the N differences in squared residuals in the out-of-sample forecasts, and re-sample

with replacement N of these points. We then calculate the mean M of the differences, where

a positive mean indicates that the model including the returns rt−1 results in smaller squared

residuals, on average, than the model that does not include them. We repeat this procedure

10,000 times, finding that the model incorporating rt−1 consistently outperforms the model

without it, as M is positive in over 93% of re-samplings, with a 95% confidence interval of

[−4.96 × 10−5, 4.07 × 10−4]. By re-centering the distribution of M to zero, we can test the

null hypothesis that including the volume signal does not change the out-of-sample accuracy.

We record the mean difference in squared residuals from the test set, and compare the absolute

value of this mean to this re-centered distribution. We find that the absolute deviation of the

re-centered distribution is greater than the absolute value of this mean 14.98% of the time, and

so we fail to reject the null hypothesis (p = 0.1498).
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4.3 Influence of individual topics

To search for individual topics that may dominate the observed relationship between ∆Ht and

rt−1, we isolate the 50 columns ρTk of ρ corresponding to individual topics. For each topic,

we compute the Pearson correlation between the differences ∆ρTk,t ≡ ρTk,t − ρTk,t−1 and the

previous-day returns of the FTSE 100. We associate a p-value to each correlation in the usual

way, using the Fisher transformation (Fisher 1915). As explained in the main text, only one

topic relating to the recent financial crisis of 2008 (“mortgage”, “loan”, “credit”, “debt”,...) was

found to be significantly impacted by previous-day returns of the FTSE 100 (p < 0.05 after

FDR correction for multiple comparisons, Benjamini & Hochberg 1995). We find that the sign

of this relationship is negative, implying a greater interest in this topic following falls in the

FTSE 100, and vice-versa.

We check the influence of this topic on our previous results by removing it from the analysis.

That is, we remove the entry corresponding to this topic from each topic vector θd, re-compute

ρt and Ht, and repeat the comparison with the returns rt of the FTSE 100. Exclusion of this

topic leaves the results qualitatively unchanged, as is evident in Table S2. We again find that

the differenced diversity ∆Ht is best modeled as an MA(1) process, according to the AIC

statistic. Moreover, upon repetition of the Diebold-Mariano test on the errors of one-step out-

of-sample forecasts, we find that inclusion of the previous-day returns of the FTSE 100 results

in significantly greater accuracy in predicting ∆Ht (DM = 1.8, N = 428, p = 0.03).
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Table S1: LDA Topics
Topic Top 10 words

1 “ge”, “dhabi”, “abu”, “nt”, “goldman”, “sach”, “en”, “capit”, “verizon”, “codelco”
2 “libor”, “cd”, “share”, “profit”, “month”, “sale”, “compani”, “year”, “revenu”, “bn”
3 “rio”, “stock”, “group”, “xstrata”, “gilt”, “list”, “yield”, “price”, “mine”, “bhp”
4 “market”, “rate”, “bank”, “price”, “dollar”, “economi”, “inflat”, “growth”, “year”, “bond”
5 “iceland”, “group”, “suez”, “french”, “compani”, “carrefour”, “sale”, “brazil”, “share”, “bn”
6 “busi”, “compani”, “googl”, “work”, “peopl”, “facebook”, “school”, “skill”, “job”, “social”
7 “investig”, “case”, “fraud”, “compani”, “alleg”, “court”, “bank”, “ivco”, “vw”, “porsch”
8 “cf”, “airlin”, “aircraft”, “trail”, “carrier”, “airbu”, “jet”, “passeng”, “boe”, “air”
9 “car”, “carmak”, “gm”, “compani”, “sale”, “vehicl”, “year”, “bn”, “market”, “plant”
10 “fund”, “manag”, “hedg”, “equiti”, “invest”, “asset”, “investor”, “global”, “incom”, “market”
11 “properti”, “etf”, “fund”, “market”, “investor”, “bank”, “invest”, “uk”, “year”, “compani”
12 “appl”, “phone”, “shown”, “mobil”, “limit”, “hlc”, “yr”, “trade”, “free”, “content”
13 “parti”, “labour”, “minist”, “elect”, “tori”, “brown”, “govern”, “cameron”, “polit”, “prime”
14 “art”, “design”, “work”, “artist”, “galleri”, “london”, “museum”, “build”, “citi”, “hous”
15 “bbc”, “film”, “weather”, “itv”, “show”, “seri”, “live”, “hollyoak”, “channel”, “region”
16 “murdoch”, “broadband”, “farmer”, “food”, “agricultur”, “bt”, “crop”, “bskyb”, “compani”, “corp”
17 “pe”, “chile”, “denmark”, “rep”, “hungari”, “colombia”, “group”, “indonesia”, “malaysia”, “argentina”
18 “cadburi”, “kraft”, “drug”, “dubai”, “lm”, “compani”, “ship”, “ord”, “shipp”, “gsk”
19 “carbon”, “emiss”, “ser”, “energi”, “climat”, “prog”, “fund”, “rbsg”, “environment”, “invest”
20 “aig”, “islam”, “pru”, “bn”, “compani”, “aia”, “bank”, “insur”, “busi”, “execut”
21 “nh”, “health”, “patient”, “hospit”, “care”, “healthcar”, “servic”, “privat”, “drug”, “compani”
22 “china”, “school”, “chines”, “busi”, “peopl”, “music”, “year”, “beij”, “work”, “univers”
23 “stock”, “call”, “request”, “fund”, “mail”, “minut”, “charg”, “price”, “thaksin”, “servic”
24 “mubarak”, “egypt”, “elect”, “egyptian”, “brotherhood”, “presid”, “protest”, “ahmadi”, “nejad”, “polit”
25 “equip”, “servic”, “leisur”, “ga”, “industri”, “telecommun”, “good”, “oil”, “materi”, “food”
26 “abn”, “emi”, “amro”, “terra”, “firma”, “bank”, “bn”, “forti”, “group”, “compani”
27 “und”, “fd”, “ssga”, “bd”, “om”, “ho”, “bs”, “class”, “govt”, “editor”
28 “index”, “fell”, “stock”, “cl”, “bank”, “rose”, “share”, “market”, “gain”, “data”
29 “properti”, “fd”, “brand”, “hotel”, “luxuri”, “hous”, “watch”, “yacht”, “sundai”, “residenti”
30 “peso”, “fund”, “equiti”, “dinar”, “privat”, “invest”, “bank”, “egypt”, “bn”, “compani”
31 “oil”, “iran”, “ga”, “bp”, “iraq”, “nuclear”, “militari”, “countri”, “govern”, “energi”
32 “price”, “dec”, “yield”, “south”, “turkei”, “pe”, “nav”, “sep”, “poland”, “venezuela”
33 “korea”, “korean”, “clear”, “lg”, “otc”, “deriv”, “south”, “trade”, “seoul”, “kim”
34 “pension”, “tax”, “scheme”, “annuiti”, “incom”, “retir”, “list”, “pai”, “benefit”, “rate”
35 “coal”, “ivco”, “aim”, “compani”, “share”, “mine”, “group”, “price”, “enrc”, “china”
36 “eu”, “european”, “eurozon”, “govern”, “bank”, “countri”, “greec”, “union”, “minist”, “debt”
37 “wine”, “russia”, “china”, “russian”, “putin”, “kairo”, “chines”, “moscow”, “restaur”, “georgia”
38 “melchior”, “opp”, “tesco”, “calculat”, “share”, “class”, “date”, “uk”, “shower”, “store”
39 “rate”, “convent”, “ng”, “market”, “appli”, “bond”, “currenc”, “il”, “meril”, “par”
40 “sun”, “fair”, “cloudi”, “shower”, “rain”, “xr”, “priceslast”, “shown”, “thunder”, “microsoft”
41 “palestinian”, “israel”, “isra”, “gaza”, “hama”, “flu”, “netanyahu”, “peac”, “dress”, “minist”
42 “compani”, “govern”, “account”, “school”, “busi”, “manag”, “rail”, “audit”, “fund”, “regul”
43 “jpm”, “siemen”, “vodafon”, “compani”, “sale”, “bn”, “group”, “year”, “deut”, “eq”
44 “gam”, “polic”, “pakistan”, “sky”, “kill”, “attack”, “sport”, “bbb”, “war”, “footbal”
45 “bank”, “fund”, “fin”, “market”, “manag”, “invest”, “investor”, “bn”, “int”, “compani”
46 “bank”, “mortgag”, “loan”, “bn”, “credit”, “capit”, “fund”, “market”, “debt”, “asset”
47 “ftse”, “cap”, “republican”, “obama”, “msci”, “global”, “romnei”, “democrat”, “dj”, “world”
48 “work”, “plai”, “book”, “music”, “life”, “peopl”, “love”, “live”, “film”, “make”
49 “cp”, “sempra”, “roch”, “prologi”, “rockwel”, “safewai”, “sherwil”, “rockwlcol”, “questdg”, “repsrv”
50 “quot”, “euriborlibor”, “libor”, “basi”, “annual”, “month”, “rate”, “icap”, “euroswiss”, “semi”
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Table S2: In-sample model results with and without Topic 46 (“mortgage”, “loan”,
“credit”, “debt”,...)

Model All topics Topic 46 removed

∆Ht = β0 +β1εt−1 + εt β1 = −0.88± 0.02∗∗∗ β1 = −0.91± 0.02∗∗∗

εt = α0 + α1rt−1 + ηt α1 = 0.5± 0.1∗∗∗ α1 = 0.3± 0.1∗

∆Ht =
γ0+γ1εt−1+γ2rt−1+εt

γ2 = 0.30± 0.07∗∗∗ γ2 = 0.20± 0.07∗∗

Note: Signif. codes: *** 0.001 ** 0.01 * 0.05
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