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ABSTRACT

The Black–Scholes model is the golden standard for pricing derivatives and options
in the modern financial industry. However, this method imposes some parametric
assumptions on the stochastic process, and its performance becomes doubtful when
these assumptions are violated. This paper investigates the application of a nonpara-
metric method, namely the empirical likelihood (EL) method, in the study of option
pricing. A blockwise EL procedure is proposed to deal with dependence in the data.
Simulation and real data studies show that this new method performs reasonably
well and, more importantly, outperforms classical models developed to account for
jumps and stochastic volatility, thanks to the fact that nonparametric methods capture
information about higher-order moments.
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1 INTRODUCTION

Since the seminal works of Black and Scholes (1973) and Merton (1973), option-
valuation methodologies have developed extensively. The Black–Scholes model has
become one of the most well-known discoveries in the finance literature, relating
the cross-sectional properties of option prices with the underlying assets’ returns
distributions. However, Rubinstein (1985) and Melino and Turnbull (1990) point out
several limitations in the Black–Scholes model due to strong assumptions, such as
the nonnormality of returns, stochastic volatility (implied volatility smile), jumps and
others. Both parametric and nonparametric approaches have been proposed to deal
with these issues.

Scott (1987), Hull and White (1987) and Wiggins (1987) extend the Black–Scholes
model and allow the volatility to be stochastic. Heston (1993) develops a closed-
form solution for option pricing when the underlying asset’s volatility is stochastic.
Duan (1995) proposes a generalized autoregressive conditional heteroscedasticity
(GARCH) option pricing model in an attempt to explain some systematic biases
associated with the Black–Scholes model. Heston and Nandi (2000) provide a closed-
form solution for option pricing, with the underlying asset’s volatility following a
GARCH.p; q/ process. Bates (1996) and Bakshi et al (1997) derive an option pric-
ing model with stochastic volatility and jumps. Kou (2002) provides a solution to
pricing the option with the double exponential jumps diffusion process. Carr and
Madan (1999) introduce the fast Fourier transform approach to option pricing, given
a specified characteristic function of the return, which provides an efficient computa-
tional algorithm to calculate the option prices (for more information, see, for example,
Duffie et al (2000), Bakshi and Madan (2000) and Carr and Madan (2009)). All of
these methods assume a parametric form of either the distribution of the underlying
asset returns or the characteristic function of the underlying asset returns.

Nonparametric approaches have also been proposed to capture the underlying asset
and option price data in order to reconstruct the structure of the diffusion process. For
example, Hutchinson et al (1994) apply neural network techniques to price derivatives.
Ait-Sahalia and Lo (1998) use the kernel regression to fit the state-price density
implicitly in option pricing. Ait-Sahalia (1996) proposes a nonparametric pricing
estimation procedure for interest rate derivative securities under the assumption that
the unknown volatility is independent of time. Stutzer (1996) adopts the canonical
valuation method, which incorporates the nonarbitrary principle embodied in the
formula for calculating the expectation of the discounted value of assets under the
risk-neutral probability distribution.

One of the most important nonparametric methodologies is the empirical likelihood
(EL), which conducts likelihood-based statistical inference by profiling a nonparamet-
ric likelihood (see, for example, Owen 1988, 1990, 2001; DiCiccio and Romano 1989;
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Hall and La Scala 1990). For the application of the EL method to time series, see
Mykland (1995), Chuang and Chan (2002) and Ling and Chan (2006), among others.
Kitamura (1997) introduces a blockwise EL method for a weakly dependent time
series. Nordman et al (2007) modify the blockwise methods to cope with various
dependence structures and ultimately achieve better finite sample performance. Yau
(2012) studies the application of EL to long-memory time series.

In this paper, we implement the EL method to price derivatives or options under
risk-neutral measures. First, we construct an empirical probability constraint using
historical holding period return time series observations without assuming the dis-
tribution family of the returns. Further, we view the derivative/option price directly
as the parameter of interest in the EL optimization procedure. An EL-based estimate
of the parameter (eg, call option price) is obtained, and the asymptotic properties of
the EL ratio are studied. We further introduce a blockwise EL procedure for weakly
dependent processes. Monte Carlo simulation and the empirical results for Standard
& Poor’s 500 (S&P 500) index options are discussed.

The remainder of this paper is organized as follows. Section 2 provides a detailed
EL procedure in option pricing. Asymptotic properties are discussed and a robust
confidence interval is constructed. Section 3 demonstrates the empirical performance
of EL option pricing, including both Monte Carlo simulation and S&P 500 index
options. Section 4 concludes the paper with discussions.

2 EMPIRICAL LIKELIHOOD IN OPTION PRICING

LetP.t/ be the underlying asset price at time t ; letD.t/ be the future dividend at time
t ; let r.s; t/ be the gross risk-free interest rate during time s and t , with r.t; t/ D 1;
let P be the physical probability measure; and let Q be the risk-neutral probability
measure (see Huang and Litzenberger 1988), under which the price process plus the
accumulated dividends are martingales after normalization if no arbitrage exists in
the pricing systems. To be specific, the latter leads to the following pricing formula:

P.t/ D EQ

�
P.T /C

PT
sDt D.s/r.s; T /

r.t; T /

�

D EP

�
P.T /C

PT
sDt D.s/r.s; T /

r.t; T /

dQ

dP

�
: (2.1)

Here, dQ=dP is the Radon–Nykodym density of the marginal measure. One can
price an option or a derivative security by evaluating the expected discounted value
under Q. For example, the call option price with strike price K and expiry date T is
given by

C.t; T / D
EQ maxŒPT �K; 0�

r.t; T /
: (2.2)
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The following subsection illustrates the idea of estimating C.t; T / through EL
coupled with the change-of-measure constraint.

2.1 The estimating procedure

Suppose historical data is available in the format

f.P.t/;D.t//; t D �1;�2; : : : ;�H g:

A nonparametric way of estimating the option price could be built on approximating
Q by a discrete distribution supported on the observed value of the option price;
namely, HPR.�i � T;�i/=r.�i � T;�i/, 1 6 i 6 H � T , with the corresponding
probability denoted by �i . Here, HPR.s; t/ is the holding period return between times
s and t . If there is no dividend, HPR.�i � T; i/ D P.�i/=P.�i � T /. Then, (2.1)
can be approximated by

1 D

H�TX
iD1

HPR.�i � T;�i/

r.�i � T;�i/
�i : (2.3)

Correspondingly, we can estimate the option price by approximating (2.2) by

OC.t; T / D
X
i

maxŒPi .T / �K; 0�

r.t; T /
�i : (2.4)

Note that the choice of �i subject to (2.3) is not unique. Stutzer (1996) uses the
idea of maximum entropy, namely maximizing

PH�T
iD1 �i log�i subject to (2.3).

Here, we adopt the EL method (Owen 1988) by changing the objective function
from entropy to EL, namely maximizing

PH�T
iD1 log�i . This objective function can

be easily interpreted as a nonparametric loglikelihood function; hence, the whole
optimization procedure in our method can be interpreted as a maximum likelihood
method, which is considered more efficient than a maximum entropy method. More-
over, Baggerly (1998) proposes a general class of EL-type methods, which contains
both

P
log�i and

P
�i log�i as special cases. In addition, Baggerly (1998) proves

the EL used in this paper is the only method in the general class that has a higher-order
correction of the large sample properties. We refer to Kitamura (1997) for a more
detailed form of the higher-order correction. Meanwhile, noting that the sequence
HPR.�i �T;�i/=r.�i �T;�i/, 1 6 i 6 H �T , possesses a reasonable amount of
dependence, we suggest adopting the blockwise version of the algorithm as follows.
Group the data intoQ blocks, where lengthM is the length of the moving block. Set
L to be the step size of the moving block. We obtain block weight ��i by maximizingPH�T
iD1 log��i subject to

1 D

QX
iD1

��i

�
1

M

MX
jD1

HPR.�i � L � j � T;�i � L � j /

r.�i � L � j � T;�i � L � j /

�
: (2.5)
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Then, estimate the option price by

C D

QX
iD1

�
1

M

MX
jD1

maxŒPi�L�j .T / �K; 0�

r.�i � L � j � T;�i � L � j /

�
��i : (2.6)

This blocking idea is studied by Kitamura (1997), who argues that using blockwise
methods offers a much better empirical performance for weakly dependent processes
in moving-average noise terms. The estimation procedure in the spirit of Kitamura
(1997) is slightly different,

max
C;��

i

QX
iD1

log��i ; (2.7)

subject to constraints (2.5), (2.6) and

QX
iD1

��i D 1;

��i > 0;

and the maximizing C is our estimator. The estimated risk-neutral measure weights
pi�i have the following form:

��i D

�
Q

�
1C �

�
1

M

MX
jD1

HPR.�i � L � j � T;�i � L � j /

r.�i � L � j � T;�i � L � j /
� 1

����1
;

where � is a Lagrange multiplier. These weights are similar to the Gibbs canonical
probability in Stutzer (1996), because they put small weights when the rates of return
of underlyings are far from risk-free returns. In addition, Peng (2015) shows that
these two approaches yield the same asymptotic property. In our simulation below,
we adopt the second method, since it is well known and there is an existing package
for implementation. In particular, Qin and Lawless (1994) provide a Lagrangian with
multipliers approach to solve the above-mentioned optimization problem. We can
either apply the numerical optimization process or derive the solution, similar to Qin
and Lawless (1994). For more details about the Lagrangian optimization or the basic
properties of the EL procedure, see Owen (1990) and Qin and Lawless (1994).

2.2 Asymptotic properties

In this subsection, we discuss some basic asymptotic properties of the option price
with respect to the EL process ((2.6) and (2.7)), which helps us to understand the
asymptotic distribution of our estimate and conduct further inference.
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Theorem 2.1 Consider that

f .HPRt ; C / D

�
maxŒPi .T / �K; 0�

r.t; T /
� C;

HPR.�t � T; t/

r.t � T; t/
� 1

�T
;

and further assume that

(i) the derivative price (C ) is in a compact set �;

(ii) C0 is a unique solution of E.f .HPRt ; C // D 0;

(iii) for sufficiently small ı > 0 and � > 0,

E
h

sup
C�2O.C;ı/

kf .HPR; C �/k
i
<1

for all C 2 �;

(iv) if a sequence of Cj , j D 1; 2; : : : , converges to some C as j ! 1,
f .HPRt ; Cj / converges to f .HPRt ; C / for all HPRt except on a null set,
which may vary with C ;

(v) C0 is an interior point of �;

(vi) Var.H�1=2
PH
iD1 f .HPRi ; C0//! S > 0; and

(vii) for a blockwise EL approach, we further assume the weak dependent conditionP1
kD1 ˛X .k/

1�1=d <1 for some constant d > 1.

We also require additional assumptions:

Ekf .HPRt ; C0/k
2d <1; for d > 1;

E sup
C�2O.C0;ı/

kf .HPRt ; C
�/k2C" < K; for some " > 0:

Then,

LR0 D 2
QX
iD1

log.1C �. OC/T f .HPRi ; OC//!dist �
2
1;

whereK is a finite number, �. OC/ is the Lagrange multiplier vector andQ is the total
number of states. Particularly for the nonblockwise EL case (ie, (2.6)),Q D H � T .

Theorem 1 provides an asymptotic distribution of the likelihood ratio LR0, which
can be further applied to inference of the estimate. We omit the detailed proof here.1

For independent observations of HPRi , we require only the assumptions (i)–(vi) to

1 Our proof is a direct consequence of Theorems 1 and 2 in Kitamura (1997).
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have the asymptotic property of the likelihood ratio; for weak-dependent observations
of HPRi , assumption (vii) is also required. Given the simple fact that the chi-squared
distribution is the square of a normal distribution, the distribution of the errors mea-
sured by the likelihood ratio will be close to the white noise when sample size goes
to infinity. This means that our estimator will eventually capture almost all of the
information in the data.

3 EMPIRICAL RESULTS

In this section, we first compare our method with several popular option pricing
models through Monte Carlo simulation, and then conduct an empirical analysis on
the option pricing for the S&P 500 index call options.

3.1 Monte Carlo simulation

3.1.1 Black–Scholes model

Following Hutchinson et al (1994), Ait-Sahalia and Lo (1995) and Stutzer (1996), we
generate a geometric Brownian motion process with a 10% drift and 20% annualized
volatility. First, we simulate two years of historical daily stock returns with 253�2 D
506 observations. We repeat this for 200 samples. For each sample, three different
prices are calculated:

(1) the estimated price by the EL option pricing procedure;

(2) the estimated price by the Black–Scholes model with historical volatility; and

(3) the actual price by the Black–Scholes model with actual volatility.

The performances of the first two prices are compared based on the mean absolute
percentage error (MAPE) with respect to the third price, which is considered to
be the true price. The comparison is made at different price-to-strike-price ratios
(ie, P=X D 9

10
; 1; 9

8
) and different expiration dates (ie, T D 1

13
; 1
4
; 1
2

).
Table 1 provides the simulation performance: panel (a) reports the MAPE of the

EL option price, and panel (b) reports the MAPE of the historical volatility-based
Black–Scholes price (Hist Var). In a perfect Black–Scholes world, the Black–Scholes
formula using historical volatility outperforms the EL option pricing methodology.
This is because the Black–Scholes formula only requires second moment information,
and 506 observations can provide a very good estimate of the second moment; the EL
method, meanwhile, automatically captures the higher-order moment information,
which is not beneficial to pricing options in a perfect Black–Scholes world.

We are also interested in the accuracy of the EL option pricing for different money-
ness and days to maturity. The EL option pricing method gives a very good perfor-
mance in pricing the in-the-money (ITM) options with small MAPE; however, the
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TABLE 1 Monte Carlo simulation in a Black–Scholes market.

Panel (a)

Hist Var Years to maturity
versus ‚ …„ ƒ

ideal BS 1/13 1/4 1/2

Moneyness (P=K) 9/10 0.2124 0.0987 0.0687
1 0.0327 0.0305 0.0284

9/8 6.375 � 10�4 0.0047 0.0080

Panel (b)

EL Years to maturity
versus ‚ …„ ƒ

ideal BS 1/13 1/4 1/2

Moneyness (P=K) 9/10 0.724 0.514 0.537
1 0.088 0.149 0.230

9/8 0.003 0.025 0.058

The mean absolute percentage error (MAPE) of the EL option price to the ideal Black–Scholes price (panel (a)),
and the historical volatility-based Black–Scholes price to the ideal Black–Scholes price (panel (b)) for different
combinations of the relative exercise prices (P=K) and time to expiration date. The price dynamics follow the
geometric Brownian motion, with � D 0.1 and � D 0.2. The relative exercise prices (P=K) are chosen as in
Rubinstein (1985) and Stutzer (1996). The time to expiration dates are 1/13, 1/4 and 1/2 years.

MAPE is very significant for out-of-the-money (OTM) options. The at-the-money
(ATM) option pricing error is in between. However, the pricing errors have differ-
ent patterns for ITM, ATM and OTM options. For ITM and ATM options, the fewer
days to maturity, the smaller the pricing errors. For OTM options, the fewest days to
maturity case has the largest pricing error, with a possible reason being that the price
magnitude of the OTM options with very few days to maturity is already very small.

3.1.2 Stochastic volatility jump model

Bates (1996) adds a compound Poisson process to the Heston stochastic volatility
model to account for the rare sudden drift of some financial assets. The stochastic
processes are defined as follows:

dS=S D � dt C
p
V dZ C k dq;

dV D .˛ � ˇV /C 	v
p
V dZv;

cov.dZ; dZv/ D 
 dt;

P.dq D 1/ D � dt;

ln.1C k/ � N.log.1C �/; ı2/:
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TABLE 2 MAPE of the four methods under the Bates model.

Jump Historical Heston
parameters EL Stutzer Black–Scholes model

� D �0.001, 0.3680 0.3804 0.5734 2.428 � 10�7

ı D 0.019

� D 0.1, 0.3759 0.4448 0.6062 0.4765
ı D 0.5

Here, we use the parameter estimates in Bates (1996) to produce simulated stock
prices and European option prices. We compare our nonparametric option pricing
method with that of Stutzer (1996) as well as the historical Black–Scholes and Heston
models. We summarize our results in Table 2. The � and ı are the mean and standard
deviations of the sizes of jumps. From Table 2, we can see that when jump sizes
are small, as is the case in the second row, our method beats the historical Black–
Scholes model, but it loses to the Heston model. This is because when jump sizes
are sufficiently small, the Bates model is extremely close to the Heston model, and,
hence, calibration of the Heston model is more or less the same as using a parametric
method with the true likelihood function. We know that the parametric likelihood
method always achieves the lowest error bound when we use the right likelihood
functions. When the jump sizes are large, however, as is the case in the third row of
Table 2, our nonparametric method not only outperforms the other methods, but also
performs consistently well, whether the jump sizes are large or small.

3.2 S&P 500 index options

We also implement the EL option pricing method in pricing S&P 500 index options.
The daily return data is from the Center for Research in Security Prices (CRSP) and
the option data is from OptionMetrics. The daily return data is from January 2011 to
December 2012. We use daily return data from 2011 as our formation period and test
its performance against daily index options pricing from 2012, comparing our results
with the historical volatility-based Black–Scholes model and the true values. We only
keep the options that have moneyness closest to 1 and days to maturity between 15
and 50.

Figure 1 shows the time series of the option prices. The red line is the true value
of the market daily close price, the green line is the EL option price, the black line is
the Black–Scholes option price using historical volatility, the blue line is the Heston
stochastic volatility option pricing using least-squares calibration and the purple line
is the method from Stutzer (1996). Due to the stock price movement, the true option
prices vary from 1.5 to 3.7; however, the historical volatility-based Black–Scholes
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FIGURE 1 Comparison of the S&P 500 index option prices and EL option prices.
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3.0

2.5

2.0

1.5

True EL Stutzer BS Heston

The time series of three S&P 500 index option prices. We only keep the options that have moneyness closest to
1 and days to maturity between 15 to 50. The red line is the true value of the market daily close price, the green
line is the EL option price, the black line is the Black–Scholes option price using historical volatility, the blue line
is Heston stochastic volatility option pricing using least-squares calibration and the purple line is the method from
Stutzer (1996).

option prices are consistently overpriced for the ATM call options, as is documented
in Hull and White (1987). In contrast, our EL option prices are closer to the true option
market prices. This is because our methodology also captures the high-order moment
information in the EL procedure, while the historical volatility-based Black–Scholes
option model only captures the second moment information.

4 CONCLUSION

In this paper, we introduced an EL method to price derivatives under a risk-neutral
measure. Based on Monte Carlo simulations and S&P 500 index option data, we
showed that our method outperforms classical alternative models (Black–Scholes,
Heston and Bates), thanks to our advantage in capturing higher-order moment
information.
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